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Viscoelasticity of concentrated dispersions
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A statistical dynamic theory is presented to describe the effects of relaxation of the microstructure,
frequency, and volume fraction (¢) on the complex shear viscosity of concentrated colloidal dispersions.
On the basis of a fluid lattice model, the relationship between the memory function and relaxation spec-
trum is derived, and the limits of shear viscosity at low and high frequencies are determined. In addition
to the pair interactions, the many body interactions at higher ¢ are included in the analysis. We calcu-
late the viscoelastic behavior of disperse systems ranging from dilute, to semidilute, to concentrated
dispersions. The theory reveals that the viscoelastic effect is negligible in dilute and semidilute suspen-

sions, but is dominant in concentrated dispersions.

PACS number(s): 82.70.Dd, 05.20.—y, 61.25.Hgq, 82.70.Kj

I. INTRODUCTION

Stable colloidal dispersions often exhibit clear viscoe-
lastic behavior [1,2]. The structural relaxation of the mi-
crostructure and its response to shear flow are the key to
understanding and controlling the phenomenon. The
linear viscoelasticity is manifested in the frequency
dependent dynamic viscosity. The viscosity of dilute sus-
pensions is independent of frequency. As the concentra-
tion of colloidal particles increases, the viscosity becomes
frequency dependent [3,4]. For semidilute suspensions,
theories for the frequency dependent shear viscosity
[5-9] have been developed. They are either phenomeno-
logical or pair interaction theories, which can be used to
calculate the dynamic viscosity to second order in the
volume fraction (¢) of colloidal particles. Cichocki and
Felderhof have also discussed the viscoelastic relaxation
of semidilute hard-sphere suspensions over decades of fre-
quency variations in their phenomenological theory [5,6].
Experimental data of Van der Werff et al. [2] have
shown that the viscoelasticity is particularly important
for dense suspensions with ¢ between 0.3 and 0.6. This
viscoelastic effect increases drastically when ¢ ap-
proaches the percolation threshold [10]. Therefore, it is
important to have a theory which can explain the com-
plex shear viscosities at higher volume fractions (¢ >0.3).
No such theory is available at the present time, and it is
the purpose of this paper to develop one.

Much of the diversity in the viscoelasticity of colloidal
dispersions can be seen clearly through an integral equa-
tion for simple shear flow in Sec. II. The key to under-
standing the complex viscosity lies in analyzing the
structural relaxation of the microstructure. The relaxa-
tion time spectrum and memory function are derived in
Sec. III and then applied to calculate master curves of the
dynamic viscosity in Sec. IV. Our analysis is based on
statistical mechanics, expressed in terms of a liquid lat-
tice model. The limits of viscosity at low and high fre-
quencies are given in Sec. V. At the low frequency limit,
we analyze the many body interactions of colloidal parti-
cles moving in a liquid lattice. Finally, a microscopic
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theory is obtained to describe the complex shear viscosity
of sterically stabilized colloidal dispersions as a function
of the relaxation time, frequency, and volume fraction.
The theory is utilized to predict the viscoelastic behavior
of disperse systems ranging from dilute, to semidilute, to
concentrated dispersions.

II. VISCOELASTICITY

The linear constitutive equation of the shear stress
(0,) and strain rate (y,) for a viscoelastic liquid can be
written by means of the Boltzmann superposition integral

(11]
o= [" Glt—s)y,(s)ds , (1)

where G is the shear relaxation modulus and ¢ is time.
When Eq. (1) is subjected to the Fourier transform in
time

ople]= [ optexp(—iotdt , ®)
it can be written in the form

o]

Ylo]

=G(w>=iwf0°°G(t)exp(—iwz)dt ) 3)

where w is the angular frequency. The complex shear
viscosity 17(@) can be related to the complex modulus by
_9nl®] _ Glo) _ G'+iG”

( )= I__l' II_ - . (4)
merm T Y lo] lo lo

Hence
7'(0)=G"(0)/o, 7"'(0)=G'(0)/o . (5

The complex modulus can in general be written as
G(w)=G,+(Gy—G, K (w), (6)

where K is the relaxation function, G, is the unrelaxed
modulus, and G, is the relaxed modulus. In the similar
fashion, we have
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No)=n,+ (17—, M () , (M

where 7, and 7, are the limits of viscosity at low and
high frequencies and M is the memory function. Equa-
tions (6) and (7) give
dK (1)
d ’

M(t)=—1 (6]
where 7 is the relaxation time. It is the ratio of the low-
frequency viscosity over the modulus of rigidity:
T=1/Gy. In the rest of the paper, we shall analyze 7(w)
as a function of the solvent viscosity 7,, ¢, », and 7.

III. MEMORY FUNCTION

The Maxwell model of viscoelasticity gives the simplest
relaxation function

Knaswen(D=exp |~ | . ©

For a real system, Eq. (9) has to be generalized

K(t)= 3 h;exp , (10)

i

where h; and 7; are the distribution and relaxation time,
respectively, of the ith relaxation element. By letting

T7;/T—S, h;—h(s), (11)
the summation in Eq. (10) can be written as an integral

K(t/r)= fowh (s)exp(—st /7)ds , (12)

where A (s) is called the relaxation time spectrum. When
the distribution is a delta function h(s)=6(s —1), Eq.
(12) reduces to Eq. (9) as expected. From Egs. (6), (7),
and (12), one gets

M(t/r)= f0°°sh (s)exp(—st /7)ds . (13)

On the basis of the free volume or hole theories of the
liquid state [12,13], a liquid lattice model [10] has been
developed recently and it provides a good description of
colloidal dynamics at high ¢. Lattice models are basical-
ly theories of solid state and have the advantage of pro-
viding good connections between the dense liquid and
amorphous solid [14,15]. Consider a lattice consisting of
n holes (free volumes) in a disperse system and » is much
less than the total number of lattice sites (N). The hole
configurations change with time in response to shear
flow. We introduce the local excess of number density
on (1,t), where r is the spatial variable. Then

n(t)—(n)=f8n(r,t)dr , (14)

where (n ) is the equilibrium value and the integration is
taken over a volume element surrounding a hole. The
hole density-density correlation function is

(8n(r,t)8n(0,0))
(8n?)

The local excess of number density relaxes as time goes

C(r,t)= (15)
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on by spreading over the entire medium in accordance
with the master equation [14]

3dn(r,t) _

Y J [AGle)8n (2, )= Alr' D)8 (£, )T’

(16)

where A(r|r’) is the transition probability per unit time
jumping from r’ to r and the integration is over the whole
space. The right-hand side of Eq. (16) can be formally ex-
panded into a series [16]. Thus

dn(r,t) _ & 1, oo
o 3 (V) (0en(n0) (17

m=1

where b,, is the mth moment of the transition rate
Alrlr')

bp(0)= [ (r'—r)"A(r|D)dr, m2>1. (18)

Since the viscoelasticity of concentrated dispersions is a
result of relaxation of the microstructure in quasiequi-
librium, the right-hand side of Eq. (17) is truncated after
the second order term. Equations (15) and (17) give

d b,
V2V

C(r,t)=8(r)d(2) . (19)
ot

When b, /2 is a (diffusion) constant, the solution of Eq.
(19) is Gaussian

2
 2b,t

C(r,t)= exp . (20)

— 5, €X
(2mb, 1)1/

By considering the structural relaxation in a fixed length
scale, the relaxation spectrum can be related to the hole
density-density correlation function [15]. We choose
x =1 and b,t/2=s, replace C(s)/s by h(s) in Eq. (20),
and obtain

h(s)= . (21)

1
s 2 €XP | 4s

Substituting Eq. (21) into Egs. (12) and (13) gives, respec-
tively, the relaxation function

K (t/7)=exp[ —(t /7)'/?] 22)

and the memory function

M(t/T)=%(T/t)l/2exp[—(t/r)”z] . (23)
IV. COMPLEX VISCOSITY

The dynamic shear viscosity 7(w) is related to the
memory function by Eq. (7)

n(w)—nw ©
—————=M(o7)= | M(ylexp(—iwTy)dy . (24)
To— 1w T fo yJexp loTy)ay

Substituting Eq. (23) into Eq. (24), we obtain
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Nw) =1, /2 £ 1
= ex erfc
Mo~ N 2(w7)!? 4 or1)? 2(07)1?

1 2 1+i

T , i
2 | 207 (1—H)w 2 2an) 2 (25)

where [17]
1+i 2i (1+i20Q2en ™12 _ 2
T |= —_— +—=_ 2°d 26
20002 | O | dor l ll (m)172 fO ¢ 26
[

The real and imaginary parts of the complex shear viscos- [2]. The maximum value of the calculated

ity can be written explicitly by expressing Eq. (25) in
terms of the Fresnel integrals

(2ror) 172

CEC[(Z')T&)T)—l/Z]:fo cos _72122 dz (27
and
_ 12y [@ren T2 |, d 5
S=S[(2rwT) ] fo sin | >-z% \dz . (28)
Therefore
@ = 1 (x| grees [
Mo~ Mo 2 | 2071 4ot
—(I—ZC)Sln E
(29)
and
172
1w 1| m (1—2C)cos |——
N~ MNw 2 | 207 40T
+(1—2S)sin ﬁ” . (30)

The dependence of 77’ and "’ on wr, calculated from Egs.
(29) and (30), is shown in Fig. 1, which compares well
with the normalized viscosities shown in Fig. 9 of Ref.

1.0
08 ['(@)-nVn, M)
06
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o271 (@) )
]
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(144

FIG. 1. Calculated master curves of the real and imaginary
part of the complex shear viscosity as a function of w7 for all ¢.

7"(@0)/(ng—7n,) is very close to thescorresponding mea-
sured value 0.3 for all volume fractions. The relaxation
time 7 is also found to be linear proportional to a2/D.
Here D is the Stokes-Einstein diffusion coefficient
D =kT /67, a, a is the particle radius, and 7, is the sol-
vent viscosity. This is another indication of the strong
coupling between the relaxation of the shear stress and
that of the microstructure.

For large wr, the asymptotic expression of the complex
shear viscosity can be obtained from Eq. (25), which gives

"(@)— 1N,
D07 M 0.627(wr) "2, for or>>1 @a1)
Mo Mo
and
;’7—_(—?’)—20.627@1-)“/2 for or>>1 . (32)
0 ©

Both 7’ and 7'’ decay as /2. Equations (29) and (31)
are compared in Fig. 2. This figure supports the experi-
mental finding [2] of the high-frequency scaling law Eq.
(31): it also provides a good description of the dynamic
viscoelastic data at the intermediate-frequency range for
all particle concentrations. Next we need to know 7, and
1. before the effect of volume fractions on the dynamic
viscosity can be calculated.

N
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FIG. 2. A comparison of Eq. (29) with its asymptote given by
Eq. (31) over a broad range of wr for all ¢.
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V. LIMITS OF VISCOSITY

The viscosity of colloidal suspensions at the high-
frequency limit has been derived on the basis of a liquid
lattice model [10]. The short range intermolecular in-
teraction within the equilibrium microstructure is the
dominant interaction mechanism at high ¢. For a system
dispersed with hard spheres, the relative high shear limit-
ing viscosity is

2.5¢
1-¢

The difference between low and high limiting viscosities
An is a result of the energy being dissipated per unit time
and volume, which is related to the decrease in the kinet-
ic energy (K ):

An=no—mn,={d(Kg)/dt) /y%, . (34)

(33)

Hoo)= =exp
K ”Iz

For particles moving in an inverse-square force field, the
classical result (K;)=—1(P;) (where Py denotes po-
tential energy) holds. When the contribution of all the

two-particle interactions in a disperse system is included,
Eq. (34) becomes [18]

1 av(r;)
2 .",'j ar,-- )’

(35)

where V is the nondimensional pair potential and r; is
the distance between centers of two spheres. The summa-
tion in Eq. (35) is over all pair interactions. The right-

hand side of Eq. (35) can be written into an integral
aV(rlz)
- f fP("lz i~ —drdr,, (36)
ory,

where p is the pair distribution function.

The potential energy between two colloidal particles
arising from the intermolecular interaction energy (e),
which characterizes the equilibrium microstructure on
the basis of our hole theory of liquid lattice [10], is

_ —e/f for X<1
u(X=10 for x>1, 37)

with X =r /2a, where f =n /N is the hole fraction. The
equilibrium radial distribution function follows:

v=exp(+e/fkT)
for X <1 (38)
1 for X=1,

_u(X)

X:
go(X)=exp T

For incompressible fluids, one approximates p~gqv,
where ¢ is determined by the Kirkwood-Smoluchowski
equation [5,19]

d (42, dy
ax [Xoax

d
—6g0¢=4X37i,0— . (39)

Therefore, Egs. (35) and (36) can be expressed more ex-
plicitly as

A, =——ﬂ [ g x0pxax = a4, @o)
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where A is the coupling constant. Noting V=g, in ther-
modynamic equilibrium, we use Eq. (38) and get
av(x) _ 8oX)

=" =—(v—18X—1 41
ax X (v —1)8( ). (41)
The boundary conditions for Eq. (39) are that i vanishes
at infinity and the requirement that the pair distribution
function is a continuous function. There is no discon-
tinuity at X =1. The solution of Eq. (39) is [19]

aX? for X<1
a/X?® for X>1

with a=4(v —1)/(2v +3). Substituting Eqgs. (38), (41),
and (42) into Eq. (40) yields

PX)= (42)

ey [Py vy 36w —1)
A=20 l)fngozlz(X)S(X NdX =55
43)

Equations (40) and (43), derived with the basic elements
of pair interaction theories [1,5,6], should be valid only
for semidilute suspensions.

As ¢ gets higher, the effective viscosity has to be
affected by the strong many body interactions. Consider
the probability P(2,1) of a colloidal particle moving from
point 1 to point 2 in a dense dispersion. This probability
is the sum of the probabilities of all the different ways
that the colloidal particle may propagate from 1 to 2. Of
course, it interacts with various local lattice sites on its
path. For simplicity, we consider only one kind of local
site which has the probability P(s). The total probability
is
P(2,1)=Py(2,1)+Py(s,1)P(5)Py(2,s)

+Py(s,1)P(s)Py(s,5)P(s)Py(2,8)+ - -+ . (44)

The first term P((2,1) is the probability of free propaga-
tion without the interference from the local site. In the
second term, Py(s,1) is the probability of the colloidal
particle which can propagate freely from 1 to site s and
Py(2,s) from s to 2. The third term can be interpreted in
the same way. This idea of the propagation of a particle
is due to Feynman, and Eq. (44) can be represented by the
Feynman diagram [20]

1 2 1 2 1

(45)

From the diagram we can immediately write down all the
various contributions to P, and the interpretation is
straightforward. P,(2,1) has a Boltzmann-type probabil-
ity distribution [18]

Py(2,1)=1—exp(—Ey/kT)~=E,/kT ,
for E,/kT <<1, (46)

where k is Boltzmann’s constant. Since Py(2,1) is essen-
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tially describing the case of two particle interaction, E,
can be treated as the pair potential and is related to the
nondimensional coupling constant in Eq. (40) by

Ey=— A¢* . 47)

Assume the total probability P(2,1) having the same
functional form of Eq. (46) and

Py(2,1)=Py(s,1)=Py(2,5)=Py(s,s) . (48)
From Eqgs. (40), (44), (47), and (48), we obtain
An,= AP*{1+[ AP*P(S)]+[A$*P(S)]?

+[AP*P(S)P+ -] . (49)

Combining Eqgs. (33) and (49) yields the low limiting
viscosity

Ap?
1— A¢*P(s) ~
(50)

7,(0)=7,( )+ An, =exp

2.5¢
256 )

which also leads to the percolatipn threshold at the low-
frequency limit

6.=[A(e/f)P(s)]" 1%, (51)

where A is given by Eq. (43) and is a strong function of
e/f. There is a drastic increase in the effective relative
viscosity 77,(0) as —¢.. P(s) may be either treated as a
fitting parameter of experimental data or calculated in ac-
cordance with our liquid lattice model by specifying the
structural detail. The many body interaction during the
passage of colloidal particle is analyzed with a set of fixed
lattice sites. P(s) is the probability of the particle being
“scattered” and 1—P(s) being able to go through. Thus
P(s) is equal to the maximum packing fraction of the
unit structural volume filled with “spheres.” Assuming
the body centered cubic lattice, we have P(s)=0.68.
Since the random process for holes discussed in Sec. III is
Gaussian, this results in €/f =1.25kT for stable disper-
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FIG. 3. Calculated low and high limiting viscosities [from
Eqgs. (33) and (50)] compared with the experimental data [3,4]
for polystyrene latices in water and silica spheres in cyclohex-
ane.
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FIG. 4. Calculated real and imaginary part of the relative
complex shear viscosity over the full frequency range and with
¢ from 0.40 to 0.50.

sions [10]. Hence the coupling constant 4=4.67 from
Eq. (43). Figure 3 shows the comparison between the
theory Egs. (33) and (50) and experimental data [3,4] for
polystyrene latices in water and for silica spheres in cy-
clohexane at high- and low-frequency limits ranging from
dilute, to semidilute, to concentrated dispersions. This
theory also reveals that the disperse systems have a more
“ordered” structure at low frequency than that at the
high frequency.

Finally, we are in the position to calculate the real and
imaginary part of the relative complex shear viscosity
over the full ranges of volume fraction and frequency by
using Egs. (29), (30, (33), and (50), with the coupling con-
stant A and probability P (s) already mentioned. The cal-
culated results are shown in Figs. 4 and 5. The lower
parts of these two figures [7, (#)=7"(w)/7,] correspond
to the upper parts [71,(w)=7'(w)/7,]. The highest curve
of ,'(w) corresponds to the highest volume fraction in
each figure. Figures 3-5 reveal that the viscoelasticity of
stable colloidal dispersions becomes important for
¢>0.3. The viscoelastic effect increases rapidly as
¢—¢. which is consistent with experimental measure-
ments [2].

20%

—_—
- - 0@
oI T T
o o
0.01 1 1 10 100 1000
T

FIG. 5. Calculated real and imaginary part of the relative
complex shear viscosity over the full frequency range and with
¢ from 0.51 to 0.55.
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VI. CONCLUSIONS

A liquid lattice model has been developed to address
the relaxation of the microstructure and the viscoelastic
response in colloidal dispersions as a function of the re-
laxation time, frequency, and volume fraction. The good
agreement between the calculated and measured master
curves of the complex shear viscosity suggests that the
structural relaxation in disperse systems is independent of
the volume fraction of hard spheres (¢). The high-
frequency scaling law with o~ !/? decay for the complex
viscosity has also been found to be valid in the
intermediate-frequency range for all ¢. In addition to the

VISCOELASTICITY OF CONCENTRATED DISPERSIONS 1279

structural relaxation, the limits of viscosity at low and
high frequencies are needed in the calculation of the
dependence of the dynamic viscosity on ¢. As the con-
centration of colloidal particles increases, we have to in-
clude the many body interaction between the colloidal
particle and fluid lattice in the evaluation of the low limit
viscosity. Our theory reveals that the viscoelasticity of
stable disperse systems is important only for ¢ >0.3. The
viscoelastic effect increases drastically as ¢ approaches a
critical value ¢.. This percolation threshold is inversely
proportional to the square root of the coupling constant
which is related to the strength of intermolecular interac-
tions.
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